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ABSTRACT 
This paper presents DOME, a host-based technique for detecting 
several general classes of malicious code in software 
executables. DOME uses static analysis to identify the locations 
(virtual addresses) of system calls within the software 
executables, and then monitors the executables at runtime to 
verify that every observed system call is made from a location 
identified using static analysis. The power of this technique is 
that it is simple, practical, applicable to real-world software, and 
highly effective against injected, dynamically generated, and 
obfuscated malicious code. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification 
– Model checking; 
D.4.6 [Operating Systems]: Security and Protection – Invasive 
software (e.g., viruses, worms, Trojan horses),  Authentication; 
K.6.5 [Management Of Computing And Information 
Systems]: Security and Protection – Invasive software (e.g., 
viruses, worms, Trojan horses),  Authentication. 

General Terms 
Algorithms, Design, Security, Verification. 

Keywords 
Malicious code detection. Intrusion detection. Anomaly 
detection. Code analysis. Static analysis. Dynamic analysis. 
System calls. Execution monitoring. 
 

1. INTRODUCTION 
This paper presents DOME1, a powerful host-based detection 
technique for protecting software against the following 
challenging classes of executable malicious code (MC): 

• Injected MC, such as worms that inject their code into 
running software processes using buffer overflow exploits; 

• Dynamically generated MC, such as polymorphic viruses 
and trojans that store their code encrypted to impede their 
detection and analysis, and then decrypt and execute 
themselves at runtime; 

• Obfuscated MC, such as viruses, trojans, and worms that 
disguise their code through data manipulations and obscure 
calculations to impede their detection and analysis. 

DOME is not tied to any specific type of code injection, 
dynamic generation, or obfuscation. For example, it is capable 
of detecting both previously seen and novel MC (such as zero-
day worms). Likewise, for injected worms, DOME works 
regardless of whether the worms are simple or complex, single- 
or multi-threaded, fast or slow, loud or stealthy, blind or 
targeted, monomorphic or polymorphic, etc. 

While DOME can be applied to different operating systems, we 
focus on Microsoft Windows 2000 and above, and its standard 
executable format, the Win32 Portable Executable File Format 
(PE) [1]. We chose this OS family because it is the most widely 
deployed and is frequently targeted by MC. 

The key idea of DOME is to preprocess software executables to 
identify the locations of Win32 API2 calls in the software, and 
then to verify that every Win32 API call observed at runtime is 
made from a location identified during preprocessing. The 
elegance of this idea is that it is simple, practical, applicable to 
real-world software, and highly effective against injected, 
dynamically generated, and obfuscated MC. 

According to our study, simple static analysis can be used to 
reliably identify the locations of Win32 API calls in typical 
compiler-generated software. This is, however, not the case for 
the three classes of MC that we are considering: For injected 
MC, its Win32 API calls will not be identified in the exploited 

                                                                 
1 DOME stands for Detection of Malicious Executables. 
2 Win32 API functions are the standard library functions of 
Microsoft Windows operating systems (OS). We assume that 
MC interacts with the OS through the Win32 API.  
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software because such MC is injected into the software process 
at runtime, so it is absent from the software executable during 
preprocessing. For dynamically generated and obfuscated MC, 
their Win32 API calls will not be identified because the 
identification algorithm does not emulate runtime code 
generation, nor does it attempt to de-obfuscate intentionally 
obfuscated code. 

Our technique is unique in being able to detect these generic and 
critical classes of MC in real-world software, with virtually no 
false-positives or false-negatives, and with low runtime 
overhead – approximately 5% slowdown per API call. 

When deployed on host machines, DOME will monitor the 
execution of designated software executables and will detect the 
presence of MC at runtime. The detection will occur before the 
MC has a chance to interact with the OS, that is, MC will be 
detected before it has a chance to access OS protected resources, 
such as files or sockets. Since execution of the detected MC can 
be stopped before it does any damage, DOME can protect host 
machines against MC. 

Notice that DOME does not just detect MC, it actually pinpoints 
the parts of MC that result in Win32 API calls. This information 
can be used as a starting point for further MC analysis and can 
help understand and respond to MC attacks. 

For MC embedded in software executables, DOME relies on the 
MC’s attempts to avoid detection and analysis to detect it. As 
such, DOME is not designed to detect unobfuscated viruses and 
trojans whose code is embedded within a software executable, 
prior to the executable being preprocessed by DOME. 
Furthermore, DOME is limited to executable MC that uses 
Win32 functions, and will therefore miss MC that causes harm 
by corrupting, crashing, or hanging infected software. Also, 
DOME does not work for worms that spread using techniques 
other than code injection, such as script-based worms or worms 
that infiltrate by social engineering and spread through drive 
sharing. In order to ensure full protection from the MC threat, a 
system based on DOME should be deployed in conjunction with 
other detection-response systems designed to address the MC 
threats not covered by DOME. 

The rest of the paper is organized as follows: Section 2 defines 
the MC space covered by DOME. Section 3 describes the 
DOME technique. Section 4 reports on a proof-of-concept study 
that we carried out to assess the feasibility of implementing 
DOME and its ability to detect MC. Section 5 considers 
different settings in which DOME can be applied. Section 6 
discusses related work, and Section 7 concludes. 

2. AREA OF COVERAGE 
DOME is designed to detect the following three general classes 
of MC: 

1. Injected code – code that is introduced into a process’ 
address space at runtime. 

2. Dynamically generated code – code that is created by a 
process at runtime. 

3. Obfuscated code – code that is present in the process’ 
original code but whose true intentions are hidden with 
obscure calculations and data manipulation.3 

Most of the worms that use exploits such as buffer overflows to 
inject themselves into software processes fall into class 1. 
Polymorphic viruses, which encrypt and embed themselves 
inside software executables on disk, are examples of class 2. 
Like dynamic code generation, code obfuscation is traditionally 
used by viruses and trojans, not worms; however, it is likely that 
next-generation worms will use these sophisticated techniques to 
hinder their detection and subsequent analysis. 

The area of coverage is further characterized by the following 
assumptions: 

Assumption 1: Any injected, dynamically generated, or 
obfuscated code is assumed to be malicious. 

This assumption is reasonable because these types of code do 
not typically occur in non-malicious software. This is especially 
true for injected code. Obfuscated code is sometimes used in 
software executables to protect proprietary algorithms or to 
prevent software from being reverse engineered. Dynamically 
generated code can also sometimes be found in software 
executables. Examples of this type of code include: stack 
trampolines, which facilitate the use of nested functions; just-in-
time compilers, which create native machine code from byte-
code; and executable decompressors, which at runtime 
decompress previously compressed executable code loaded from 
disk. In our future work, we will investigate how these special 
cases can be addressed by DOME. 

Assumption 2: MC interacts with the OS. 

Most types of malicious activities, such as accessing network or 
file services, involve interactions with the OS; others, e.g., [2, 
3], have made a similar observation. However, some malicious 
activities, such as denying service or corrupting data, can be 
done without interactions with the OS; MC that limits itself to 
such activities will not be detected by DOME. 

Assumption 3: In interacting with the OS, MC uses the Win32 
APIs. 

Instead of using the Win32 APIs, it is possible to interact with 
the OS through the Windows NT native API functions. DOME 
can be extended to cover this type of interaction. One possible 
solution is to consider as malicious all Windows NT native API 
calls made by user-mode executables. 

Assumption 4: When MC hides itself from detection and 
analysis by using dynamic code generation and obfuscation, its 
Win32 API usage is hidden as well. 

Since the Win32 API calls made by MC embody the essence of 
what the MC does and how it works, if the MC’s goal is to 
hinder detection and analysis, it makes sense for MC to hide its 
Win32 API usage. This is typically done either with dynamic 
code generation or with obfuscation. One common obfuscation 
technique is to use complicated calculations or in-memory code 
scanning to determine the address or string name of an API 

                                                                 
3 This definition is not as precise as the previous two. 

Assumption 4 clarifies what we mean by obfuscation. 
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function. Another technique is to use a dynamic binding 
function (e.g., GetProcAddress) in non-standard ways. 

Assumption 5: Software executables that are to be protected 
can be successfully disassembled, and the Win32 APIs used by 
these executables can be effectively monitored at runtime. 

We expect that most compiler-generated software satisfies this 
assumption. 

3. DETECTION TECHNIQUE 
At its core, DOME involves two steps that are applied to 
software executables being protected against exploitation by 
MC: 

1. Preprocess each software executable to identify the 
instructions that call into Win32 APIs and save their virtual 
addresses and the API names as a model of the Win32 API 
calls that the executable makes. 

2. Monitor Win32 API calls made by software executables at 
runtime. When a Win32 API is called, identify the 
instruction that produced the call and its address within the 
executable. Then, validate the instruction address and the 
API name against the model generated during the 
preprocessing step. If a mismatch occurs, signal detection.4 
At this point, a response system can protect the host by 
blocking the API call. 

We are assuming that the software executables do not change 
after the preprocessing step. If software is updated, the 
preprocessing step must be repeated. Modifications of software 
executables due to a viral infection that occurs after the 
preprocessing step can be easily detected with an integrity 
checking approach based on an MD5 or SHA-1 file hash. 

The introduction explains why DOME is successful at detecting 
injected, dynamically-generated, and obfuscated MC. We now 
describe the two steps in detail, and then consider how DOME 
must be extended to handle MC that uses the knowledge of how 
DOME works to bypass it. 

3.1 Preprocessing 
In the preprocessing step,  software executables are 
disassembled and analyzed to identify the instructions that call 
into Win32 APIs. The virtual addresses of these instructions and 
the API names are then recorded. For reasons that will become 
clear in the next subsection, we also record the addresses of the 
instructions that occur immediately after the identified Win32 
API calls – these are the return addresses for the Win32 API 
calls, and they should appear on the top of the runtime stack 
when the calls are made. 

The identification mechanism draws a line between which 
Win32 API calls will be treated as normal and which as 
malicious at runtime. The identification mechanism should be 
designed so that it can see all of the Win32 API calls made by 

                                                                 
4 A version of DOME can be implemented without the 

preprocessing step: it can monitor Win32 API calls and 
determine at runtime if the calls are identifiable at the right 
locations in the disk copy of the software executable. This 
version has a higher runtime overhead and may be less 
accurate. 

normal compiler-generated code, but none of the Win32 API 
calls that are intentionally hidden. Luckily, designing an 
identification mechanism with such a property is straightforward 
because the way Win32 API calls are made by “normal” code is 
significantly different from the way these calls appear in 
intentionally obfuscated code. 

In compiler-generated code, Win32 APIs are typically called by 
referencing the appropriate entries in the import address table 
(IAT). The calls are either direct references to the IAT, as in 
“call [IAT Entry 4],” or they are indirect references 
that can be identified with simple static analysis. 

For example, a common way for optimized code to make a 
Win32 API call is to load the address of the API’s IAT entry 
into a CPU register and then issue a call instruction referencing 
the register. Simple backward slicing on the register from the 
point of the call instruction can be used to identify that this call 
instruction is meant to invoke a specific API. 

Static analysis can also be used to identify calls to late-bound 
Win32 APIs, which are APIs whose addresses are determined at 
runtime using GetProcAddress. Upon encountering a call to 
GetProcAddress, the Win32 API name can be associated 
with the registers or memory locations that are to be bound to 
the Win32 API addresses. 

To accommodate real-world software, the preprocessing step 
should be able to handle software comprised of multiple 
executable components, such as custom DLLs. 

3.2 Monitoring and detection 
This step monitors the Win32 API calls made by software 
processes and verifies that the instruction addresses from which 
the calls were made and the names of the corresponding Win32 
APIs were identified during the preprocessing step. There are 
two logical parts to this step: monitoring Win32 API calls, and 
validating the calls against the information recorded during the 
preprocessing step. 

Monitoring Win32 API calls: A number of methods can be 
used to monitor the Win32 API calls made by processes [4]. In 
our proof-of-concept study, we chose to use the direct patching 
method implemented by the Detours package [5], which 
instruments the DLLs containing the Win32 APIs at load time. 
By directly patching the entry point of each Win32 API, all 
Win32 API calls can be monitored. Patching DLLs at load time 
allows software executables to be monitored selectively. 

Figure 1 depicts how a call to a Win32 API occurs from a 
software process when the API is patched with Detours. The 
process makes a call into the API function (1), the first 
instruction of which is an unconditional jump to the Detours 
wrapper (2). The wrapper may execute pre-stub code before 
returning control to the Win32 API body (3 and 4). After the 
Win32 API body finishes executing, control is returned back to 
Detours (5), which may execute post-stub code before returning 
control to the caller (6). The pre-stub code is where DOME 
validates the Win32 API call against the information identified 
during the preprocessing step.  

Similarly to the preprocessing step, the monitoring step should 
be able to handle software comprised of multiple executable 
components. 
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EXE
IAT:
API1_ADDRESS
API2_ADDRESS

Text:
…
CALL [IAT_API2_ENTRY]
…

Win32 DLL

…
API2:
JMP API2_STUB
<Function Body>
RET

1

Detours DLL

…
API2_Wrapper:
<Pre-stub code:
 Validate the call>
CALL API2_TRAMPOLINE
<Post-stub code>
RET

API Trampoline
API2_TRAMPOLINE:
PUSH EBP
MOV EBP, ESP
JMP API2 + Offset

2

3

4

5

6

 
Figure 1: Detoured API Call 

Validation of Win32 API calls: As was mentioned above, the 
validation of Win32 API calls is done by the pre-stub code of 
the API’s wrapper. When a Win32 API call is made and the pre-
stub code gets control, the top of the runtime stack is supposed 
to contain the return address for the call. To validate the call, 
DOME checks whether the return address and the API name 
were recorded during the preprocessing step. If they were, the 
wrapper control transfers to the Win32 API body. Otherwise, 
detection is signaled. 

To handle DLL relocation (rebasing), which may occur when 
two or more DLLs want to be loaded into conflicting address 
ranges, DOME should use instruction addresses relative to the 
DLLs’ base addresses. 

3.3 Handling bypassability 
The basic version of DOME described so far is simple, and yet 
is highly effective at detecting most of MC within its area of 
coverage. The notable exception is MC that intentionally avoids 
DOME and/or the underlying monitoring technique [6]. To 
handle such MC, DOME needs to be extended. We now outline 
how this can be done; we intend to make these extensions a part 
of our future work. 

DOME bypassability: One way that MC may attempt to 
circumvent DOME is to forge the return address on the top of 
the runtime stack, making it appear that the call originated from 
one of the statically identified locations. Another way is for MC 

to use the software’s own instructions that call Win32 APIs, 
while possibly supplying its own malicious arguments. There is 
a number of measures that can be implemented to counter such 
attacks. Two promising techniques are identifying and recording 
static Win32 API arguments during preprocessing and then 
validating them at runtime, and performing runtime stack 
verification. 

Wrappers bypassability: Any API wrapper system 
implemented in user-mode can be bypassed. In particular, if MC 
is designed with the knowledge that the detection system uses 
Detours, it can manipulate memory and disable the wrappers 
prior to calling any APIs. In addition, MC can call directly into 
the kernel, thus avoiding the Win32 API calls and their 
wrappers. On IA32 systems, calls into the kernel typically rely 
on a privilege change triggered by an interrupt or the 
sysenter instruction. One way to prevent wrappers from 
being bypassed is to add a kernel-level authentication 
mechanism that verifies that the APIs are reached only after the 
execution has passed through the unmodified wrappers. 

4. PROOF-OF-CONCEPT STUDY 
In order to assess the feasibility of implementing DOME and its 
ability to detect MC, we performed a proof-of-concept study. 
The specific goals of this study were to verify the following 
three assertions: 

1. It is possible to identify API calls in real-world software 
using static analysis. 

2. It is possible to monitor API calls at runtime and to identify 
the instructions responsible for the observed API calls. 

3. Provided the above two assertions are true, DOME is able 
to accurately distinguish between normal code and code 
that is injected, dynamically generated, or obfuscated. 

The pr
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Figure 2: Sample output produced by  

004013AC ExitProcess 

004013BD GetModuleHandleA 

004013FF GetVersionExA 

00401434 GetEnvironmentVariableA

00401494 GetModuleFileNameA 

00401539 HeapCreate 

00401578 HeapDestroy 
the preprocessing and the monitoring steps 

eprocessing step was done using the IDA Pro 
bler [7], which, in addition to disassembling 
les, also identifies and annotates instructions that make 
PI calls. The monitoring step was implemented using 

urs wrapper package [5]. Each step produced an output 
sisting of API calls and their locations, as depicted in 
. The output files were then compared to identify the 

ls that occurred at runtime from the locations that were 
tified during the preprocessing step. 

luated DOME’s performance on a number of benign 
les, benign executables that had malicious code 

ed in them, and benign executables that had malicious 
ected into them at runtime. 



4.1 Benign executables 
Table 1 lists the benign samples that we used. The samples 
include software applications that were created using different 
compilers and that involve different types of resources (e.g., 
network and file system). 

Table 1. Selected Benign Executables 
Application Vendor Compiler Key Resources 

Ipconfig Microsoft VC++ Network 
Front page Microsoft MS Internal File, Network, 

COM 
Interfaces 

WinVNC AT&T Borland Network 
Acrobat Adobe VC++ File, DLL 

plugins 
Mozilla Mozilla Gcc Network 

Notepad* Microsoft VC++ File 
Perfmon* Microsoft MS Internal Registry 
Chlinst* Microsoft MS Internal Registry 

The tests were all successful: we did not observe any unexpected 
API calls. The only false positives we observed were due to 
dynamic binding of APIs, which we expected because the static 
analysis performed by IDA Pro does not handle this case.  

Table 2.  Selected Malicious Executables 
Malicious 

Code 
Host 

Application 
Type Class 

W32-Crypto Notepad Virus Dyn. Code Gen. 
W32-Simile Perfmon Virus/ 

Worm 
Obfuscation 

W32-Magistr Chlinst Virus/ 
Worm 

Dyn. Code Gen. 

W32-CTX Eclabm13 Virus Dyn. Code Gen. 
W32-Roach Cookie Worm Dyn. Code Gen. 

W32-Sapphire MS SQL server Worm Code Injection 

4.2 Malicious code samples 
Table 2 lists the MC samples. These consist of the viruses and 
worms that use dynamic code generation (polymorphism), 
obfuscation, and code injection. For each of the samples, the 
proof-of-concept implementation successfully detected API calls 
made by the MC. 

The proof-of-concept implementation produces a trace of the 
Win32 API calls that were observed at runtime but that were not 
identified during preprocessing. This trace, in a way, “tells a 
story” of how the MC works, which can be used to analyze the 
MC further and to produce human-readable descriptions of what 
the MC does. As an illustration, Table 3 shows a sample of the 

                                                                 
* Our malicious code samples were embedded in these 

applications, so we felt that we should also analyze the 
original executables to verify that our system identified only 
the API calls made by the MC. 

 
 

trace for an application infected with the W32-Simile virus and 
compares it with the analysis of W32-Simile presented in Virus 
Bulletin [8], which states that 

W32-Simile is highly obfuscated and challenging to 
understand. The virus attacks disassembling, debugging 
and emulation techniques, as well as standard evaluation-
based techniques for virus analysis. In common with many 
other complex viruses, Simile uses [entry-point 
obfuscation] EPO techniques. 

As can be seen from Table 3 the output produced by  DOME 
matches the human-written description of W32-Simile, yet this 
output was generated without human guidance. 

4.3 Performance overhead 
In our experience, IDA Pro can statically analyze PE 
executables at around 5KB/s on a 600MHz Pentium machine. 
The Detours wrappers add around a 5% runtime overhead to 
each API call, which is consistent with the figures cited by [5]. 

5. DEPLOYMENT OPTIONS 
DOME has been primarily designed as a host-based, online 
detection technique capable of monitoring and protecting real-
world software. However, the technique can also be 
implemented in offline scanners and MC analysis tools to detect 
dynamically generated and obfuscated code in software 
executables. 

5.1 Online detection and blocking 
In this instantiation, DOME can be used to preprocess and 
monitor designated software executables, and can detect and 
stop worms injected into these executables at runtime, as well as 
dynamically generated and obfuscated MC embedded in these 
executables prior to the preprocessing step. Note that DOME is 
also capable of detecting both simple and complex viruses that 
infect software executables after they are preprocessed; 
however, such alterations to software executables can be 
detected via simpler means, such as comparing the executables’ 
current and original hashes. 

In a real-world deployment scenario, there are a number of 
alternative approaches to preprocessing and monitoring. 
Preprocessing can be done for all or selected executables, and 
for each installed copy separately or once for a set of 
installations either by a site administrator, software 
manufacturer, or trusted third-party. Monitoring of Win32 API 
calls can be done per executable, or system-wide by rewriting 
DLLs. 

As was mentioned earlier, some software applications use 
obfuscation to protect proprietary algorithms or to prevent 
software from being reverse engineered. If such software needs 
to be protected by DOME, an administrator, at the time of 
system deployment and/or tuning, could mark detected API calls 
as legitimate. Also, in a military or government environment, it 
is reasonable to require obfuscated software to come equipped 
with some sort of guarantees of its behavior, which could 
include the list of API calls that the software makes along with 
their locations. 
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Table 3. Comparison for W32 Simile

 
When a new software executable is installed and run by a user 
before the preprocessing step is done, an alternative version of the 
system can be employed: when the executable calls an API, the 
system can read the corresponding code on disk and, using local 
static analysis, determine if the API call can be identified at that 
location (the analysis results can be cached). If not, the system 
could signal detection and block the API call. The local code 
analysis performed at runtime will impose additional overhead 
and may be less accurate than full analysis performed as the 
preprocessing step. 
The most effective way to protect a network against fast-spreading 
worms is to deploy DOME systems on every machine. This will 
protect the network from a distributed, targeted attack capable of 
compromising the network in only one to three generations of 
worm propagation. 
In order to ensure full protection from the MC threat, a system 
based on DOME should be deployed in conjunction with other 
detection-response systems designed to address MC not covered 
by our technique, such as scripts and social-engineering worms. 
DOME systems can also be deployed on honeypots [9] to monitor 
their network services and facilitate early detection and analysis of 
worm-based attacks. 

5.2 Offline software scanning 
The DOME technique can also be used in an antivirus-like 
scanner. Such a scanner could preprocess designated software 
executables and then launch the executables to see if they produce 
any Win32 API calls from locations that were not identified. 
For thorough scanning, the executables need to be driven through 
all possible execution paths; however, the problem of application 
driving is an active area of research that currently does not have 
practical application-independent solutions. A practical approach 
is to simply launch the executables and then terminate them after 
some small amount of time. This approach would detect MC that 
executes at least one Win32 API call every time its host 
executable is launched, which is typical of existing MC and is 

consistent with what we observed during our proof-of-concept 
study. For example, MC that uses a temporal trigger to control 
when its malicious body is run will typically call a time API to 
check the trigger conditions every time the host executable is 
launched. 
To ensure the host system is not affected by MC during scanning, 
the Win32 API calls that are identified as malicious need to be 
blocked. 

5.3 Online and offline analysis 
DOME does not just detect MC, it actually pinpoints the 
instructions belonging to MC. This information can be used by an 
online or offline analysis tool to isolate and analyze MC. Possible 
goals of such analysis might be to generate detection signatures 
and firewall rules, to analyze the payload and trigger mechanisms, 
to predict propagation vectors, or to identify code lineage and 
perform attribution. DOME can also serve as the foundation for a 
tool that generates human-readable descriptions of how MC 
works. 

6. RELATED WORK 
Methods of detecting MC can generally be classified into one of 
the following two categories: misuse detection and anomaly 
detection. Misuse detection schemes focus on “maliciousness”. 
They attempt to identify code characteristics and/or runtime 
behaviors that are defined to be malicious. Unlike misuse 
detection schemes, anomaly detection schemes focus on 
“normalcy”. They attempt to identify code characteristics and/or 
runtime behaviors that deviate from those that are defined to be 
normal, i.e., non-malicious. 
DOME is an anomaly detection technique. Normal runtime 
behavior consists of the Win32 API calls that occur from the 
locations that have been identified by DOME during the 
preprocessing step. 
Many existing anomaly detection techniques, such as [3, 10-14], 
create models of normal behavior based on sequences of system 

Human Analysis (Virus Bulletin) Malicious Win32 API call trace detected by DOME 

“On initial execution, the virus 
body will retrieve the addresses of 
20 APIs that it requires for 
replication and for displaying the 
payload.” 

1. 013FDF09 GetProcAddress (CreateFileA) KERNEL32 
2. 013FDF09 GetProcAddress (CreateFileMappingA) KERNEL32 
3. 013FDF09 GetProcAddress (MapViewOfFile) KERNEL32 
4. 013FDF09 GetProcAddress (UnmapViewOfFile) KERNEL32 
5. 013FDF09 GetProcAddress (GetSystemTime) KERNEL32 
... 
20.013FDF09 GetProcAddress (MessageBoxA) USER32 

“Next the replication phase begins. 
It starts by searching for *.exe in 
the current directory, then on all 
fixed and mapped network drives.”  

0140A544 FindFirstFileA 
013F7616 FindNextFileA 
013F7616 FindNextFileA  
...  
013FC5B5 GetFileAttributesA 
...( API calls infecting the file) 
0140B0B4 SetFileAttributesA 
013F7616 FindNextFileA 
... 
  

0140ACA9 SetCurrentDirectoryA 
0140A544 FindFirstFileA 
013F7616 FindNextFileA 
... 
01408550 GetLogicalDriveStringsA 
013F7485 GetDriveTypeA 
0140ACA9 SetCurrentDirectoryA 
0140A544 FindFirstFileA 
013F7616 FindNextFileA 
... 
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calls; Feng et al. [10] provide a comprehensive review of these 
techniques. In contrast, DOME does not use system call traces. 
It is unique in using the addresses of the system call instructions 
as the basis for its model of normal behavior. The advantages of 
this model include simplicity, practicality, and effectiveness. 
Most anomaly detection techniques, especially those that use 
system calls [10, 11, 13, 14], create models of normal behavior by 
monitoring software at runtime. Then, when the learning phase is 
completed, they switch to an anomaly detection phase, during 
which they continue to monitor the software’s execution looking 
for deviations from the behavior that was learned. 
A limitation of these techniques is that their models include only 
the behavior observed during the learning phase, which is likely to 
be only a fraction of all of the behaviors that the software can 
exhibit. Unlearned behavior observed during the anomaly 
detection phase results in false positives [15]. DOME does not 
have this limitation since its models include all the non-malicious 
system calls that the executables can make at runtime; as a result, 
DOME generates virtually no false-positives.  
Moreover, in comparison with observation-based anomaly 
detection, DOME provides a wider area of coverage. Observation-
based systems are designed to detect MC intrusions that occur 
during the anomaly detection phase, after the models of normal 
behavior are learned. DOME is able to detect not only MC 
injected at runtime but also sophisticated MC embedded in the 
software executables prior to the preprocessing step. 
Like DOME, the techniques of Wagner et al. [3] and Giffin et al. 
[12] use static analysis of software to construct models of the 
software’s normal behavior. 
The technique of Wagner et al [3] operates on source code, and 
makes a number of simplifying assumptions regarding the 
complexity of the source code. The technique constructs a global 
control-flow graph of the software and then converts the graph 
into a nondeterministic finite state automaton (NFA) or a 
nondeterministic pushdown automaton (NPDA) to model the 
sequences of system calls that the software can make. These 
models are complex and it is unclear whether they can be 
constructed for real-world software; moreover, the monitoring 
overhead is substantial because of the nondeterminism of the 
automata. The NFA model has an inherent imprecision problem: it 
includes system call traces that are not present in the software; if 
such traces are produced by MC they will not be detected. The 
NPDA model addresses this imprecision problem by including an 
abstract version of the runtime stack in the model, but this 
extension makes the model even more complex and results in 
impractical runtime overhead. 
The technique of Giffin et al. was developed for securing mobile 
code, such as remote procedure calls [12]. It operates on 
executable code and  creates models that are similar to the NFA 
model of Wagner et al. The authors suggest several program 
transformation techniques to reduce the amount of 
nondeterminism and make the model more precise; such 
transformations may be appropriate for mobile code, but are 
unlikely to be appropriate for traditional host-based software 
because of legal and interoperability issues. 

7. SUMMARY 
We presented DOME, a technique for detecting injected, 
dynamically generated, and obfuscated MC in software 
executables. The results of our proof-of-concept study suggest that 

DOME is effective at detecting MC. The main idea of DOME is 
to use static analysis to identify the locations of Win32 API calls 
within software executables and to use these locations as a model 
of which Win32 API calls are allowed to occur at runtime. This 
basic model can be extended in a number of ways to counter 
MC’s attempts to bypass DOME; one promising idea is to include 
in the model information about the Win32 API call arguments. 
We will pursue this and other extensions in our future work, when 
we implement and evaluate an online detection system based on 
DOME. 
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