
 Detection of Injected, Dynamically Generated,
 and Obfuscated Malicious Code

 Jesse C. Rabek Roger I. Khazan Scott M. Lewandowski Robert K. Cunningham

 Massachusetts Institute of Technology
 Lincoln Laboratory
 244 Wood Street

 Lexington, MA 02420-9108
 {jesrab, rkh, scl, rkc} @ll.mit.edu

ABSTRACT
This paper presents DOME, a host-based technique for detecting
several general classes of malicious code in software
executables. DOME uses static analysis to identify the locations
(virtual addresses) of system calls within the software
executables, and then monitors the executables at runtime to
verify that every observed system call is made from a location
identified using static analysis. The power of this technique is
that it is simple, practical, applicable to real-world software, and
highly effective against injected, dynamically generated, and
obfuscated malicious code.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification
– Model checking;
D.4.6 [Operating Systems]: Security and Protection – Invasive
software (e.g., viruses, worms, Trojan horses), Authentication;
K.6.5 [Management Of Computing And Information
Systems]: Security and Protection – Invasive software (e.g.,
viruses, worms, Trojan horses), Authentication.

General Terms
Algorithms, Design, Security, Verification.

Keywords
Malicious code detection. Intrusion detection. Anomaly
detection. Code analysis. Static analysis. Dynamic analysis.
System calls. Execution monitoring.

1. INTRODUCTION
This paper presents DOME1, a powerful host-based detection
technique for protecting software against the following
challenging classes of executable malicious code (MC):

• Injected MC, such as worms that inject their code into
running software processes using buffer overflow exploits;

• Dynamically generated MC, such as polymorphic viruses
and trojans that store their code encrypted to impede their
detection and analysis, and then decrypt and execute
themselves at runtime;

• Obfuscated MC, such as viruses, trojans, and worms that
disguise their code through data manipulations and obscure
calculations to impede their detection and analysis.

DOME is not tied to any specific type of code injection,
dynamic generation, or obfuscation. For example, it is capable
of detecting both previously seen and novel MC (such as zero-
day worms). Likewise, for injected worms, DOME works
regardless of whether the worms are simple or complex, single-
or multi-threaded, fast or slow, loud or stealthy, blind or
targeted, monomorphic or polymorphic, etc.

While DOME can be applied to different operating systems, we
focus on Microsoft Windows 2000 and above, and its standard
executable format, the Win32 Portable Executable File Format
(PE) [1]. We chose this OS family because it is the most widely
deployed and is frequently targeted by MC.

The key idea of DOME is to preprocess software executables to
identify the locations of Win32 API2 calls in the software, and
then to verify that every Win32 API call observed at runtime is
made from a location identified during preprocessing. The
elegance of this idea is that it is simple, practical, applicable to
real-world software, and highly effective against injected,
dynamically generated, and obfuscated MC.

According to our study, simple static analysis can be used to
reliably identify the locations of Win32 API calls in typical
compiler-generated software. This is, however, not the case for
the three classes of MC that we are considering: For injected
MC, its Win32 API calls will not be identified in the exploited

1 DOME stands for Detection of Malicious Executables.
2 Win32 API functions are the standard library functions of
Microsoft Windows operating systems (OS). We assume that
MC interacts with the OS through the Win32 API.

* This research was sponsored by the Defense Advanced Research Project
Agency (DARPA) under Air Force Contract F19628-00-C-0002.
Opinions, interpretations, conclusions, and recommendations are not
necessarily endorsed by the US Government.

Copyright 2003 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
WORM’03, October 27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-785-0/03/0010…$5.00.

76

software because such MC is injected into the software process
at runtime, so it is absent from the software executable during
preprocessing. For dynamically generated and obfuscated MC,
their Win32 API calls will not be identified because the
identification algorithm does not emulate runtime code
generation, nor does it attempt to de-obfuscate intentionally
obfuscated code.

Our technique is unique in being able to detect these generic and
critical classes of MC in real-world software, with virtually no
false-positives or false-negatives, and with low runtime
overhead – approximately 5% slowdown per API call.

When deployed on host machines, DOME will monitor the
execution of designated software executables and will detect the
presence of MC at runtime. The detection will occur before the
MC has a chance to interact with the OS, that is, MC will be
detected before it has a chance to access OS protected resources,
such as files or sockets. Since execution of the detected MC can
be stopped before it does any damage, DOME can protect host
machines against MC.

Notice that DOME does not just detect MC, it actually pinpoints
the parts of MC that result in Win32 API calls. This information
can be used as a starting point for further MC analysis and can
help understand and respond to MC attacks.

For MC embedded in software executables, DOME relies on the
MC’s attempts to avoid detection and analysis to detect it. As
such, DOME is not designed to detect unobfuscated viruses and
trojans whose code is embedded within a software executable,
prior to the executable being preprocessed by DOME.
Furthermore, DOME is limited to executable MC that uses
Win32 functions, and will therefore miss MC that causes harm
by corrupting, crashing, or hanging infected software. Also,
DOME does not work for worms that spread using techniques
other than code injection, such as script-based worms or worms
that infiltrate by social engineering and spread through drive
sharing. In order to ensure full protection from the MC threat, a
system based on DOME should be deployed in conjunction with
other detection-response systems designed to address the MC
threats not covered by DOME.

The rest of the paper is organized as follows: Section 2 defines
the MC space covered by DOME. Section 3 describes the
DOME technique. Section 4 reports on a proof-of-concept study
that we carried out to assess the feasibility of implementing
DOME and its ability to detect MC. Section 5 considers
different settings in which DOME can be applied. Section 6
discusses related work, and Section 7 concludes.

2. AREA OF COVERAGE
DOME is designed to detect the following three general classes
of MC:

1. Injected code – code that is introduced into a process’
address space at runtime.

2. Dynamically generated code – code that is created by a
process at runtime.

3. Obfuscated code – code that is present in the process’
original code but whose true intentions are hidden with
obscure calculations and data manipulation.3

Most of the worms that use exploits such as buffer overflows to
inject themselves into software processes fall into class 1.
Polymorphic viruses, which encrypt and embed themselves
inside software executables on disk, are examples of class 2.
Like dynamic code generation, code obfuscation is traditionally
used by viruses and trojans, not worms; however, it is likely that
next-generation worms will use these sophisticated techniques to
hinder their detection and subsequent analysis.

The area of coverage is further characterized by the following
assumptions:

Assumption 1: Any injected, dynamically generated, or
obfuscated code is assumed to be malicious.

This assumption is reasonable because these types of code do
not typically occur in non-malicious software. This is especially
true for injected code. Obfuscated code is sometimes used in
software executables to protect proprietary algorithms or to
prevent software from being reverse engineered. Dynamically
generated code can also sometimes be found in software
executables. Examples of this type of code include: stack
trampolines, which facilitate the use of nested functions; just-in-
time compilers, which create native machine code from byte-
code; and executable decompressors, which at runtime
decompress previously compressed executable code loaded from
disk. In our future work, we will investigate how these special
cases can be addressed by DOME.

Assumption 2: MC interacts with the OS.

Most types of malicious activities, such as accessing network or
file services, involve interactions with the OS; others, e.g., [2,
3], have made a similar observation. However, some malicious
activities, such as denying service or corrupting data, can be
done without interactions with the OS; MC that limits itself to
such activities will not be detected by DOME.

Assumption 3: In interacting with the OS, MC uses the Win32
APIs.

Instead of using the Win32 APIs, it is possible to interact with
the OS through the Windows NT native API functions. DOME
can be extended to cover this type of interaction. One possible
solution is to consider as malicious all Windows NT native API
calls made by user-mode executables.

Assumption 4: When MC hides itself from detection and
analysis by using dynamic code generation and obfuscation, its
Win32 API usage is hidden as well.

Since the Win32 API calls made by MC embody the essence of
what the MC does and how it works, if the MC’s goal is to
hinder detection and analysis, it makes sense for MC to hide its
Win32 API usage. This is typically done either with dynamic
code generation or with obfuscation. One common obfuscation
technique is to use complicated calculations or in-memory code
scanning to determine the address or string name of an API

3 This definition is not as precise as the previous two.

Assumption 4 clarifies what we mean by obfuscation.

77

function. Another technique is to use a dynamic binding
function (e.g., GetProcAddress) in non-standard ways.

Assumption 5: Software executables that are to be protected
can be successfully disassembled, and the Win32 APIs used by
these executables can be effectively monitored at runtime.

We expect that most compiler-generated software satisfies this
assumption.

3. DETECTION TECHNIQUE
At its core, DOME involves two steps that are applied to
software executables being protected against exploitation by
MC:

1. Preprocess each software executable to identify the
instructions that call into Win32 APIs and save their virtual
addresses and the API names as a model of the Win32 API
calls that the executable makes.

2. Monitor Win32 API calls made by software executables at
runtime. When a Win32 API is called, identify the
instruction that produced the call and its address within the
executable. Then, validate the instruction address and the
API name against the model generated during the
preprocessing step. If a mismatch occurs, signal detection.4
At this point, a response system can protect the host by
blocking the API call.

We are assuming that the software executables do not change
after the preprocessing step. If software is updated, the
preprocessing step must be repeated. Modifications of software
executables due to a viral infection that occurs after the
preprocessing step can be easily detected with an integrity
checking approach based on an MD5 or SHA-1 file hash.

The introduction explains why DOME is successful at detecting
injected, dynamically-generated, and obfuscated MC. We now
describe the two steps in detail, and then consider how DOME
must be extended to handle MC that uses the knowledge of how
DOME works to bypass it.

3.1 Preprocessing
In the preprocessing step, software executables are
disassembled and analyzed to identify the instructions that call
into Win32 APIs. The virtual addresses of these instructions and
the API names are then recorded. For reasons that will become
clear in the next subsection, we also record the addresses of the
instructions that occur immediately after the identified Win32
API calls – these are the return addresses for the Win32 API
calls, and they should appear on the top of the runtime stack
when the calls are made.

The identification mechanism draws a line between which
Win32 API calls will be treated as normal and which as
malicious at runtime. The identification mechanism should be
designed so that it can see all of the Win32 API calls made by

4 A version of DOME can be implemented without the

preprocessing step: it can monitor Win32 API calls and
determine at runtime if the calls are identifiable at the right
locations in the disk copy of the software executable. This
version has a higher runtime overhead and may be less
accurate.

normal compiler-generated code, but none of the Win32 API
calls that are intentionally hidden. Luckily, designing an
identification mechanism with such a property is straightforward
because the way Win32 API calls are made by “normal” code is
significantly different from the way these calls appear in
intentionally obfuscated code.

In compiler-generated code, Win32 APIs are typically called by
referencing the appropriate entries in the import address table
(IAT). The calls are either direct references to the IAT, as in
“call [IAT Entry 4],” or they are indirect references
that can be identified with simple static analysis.

For example, a common way for optimized code to make a
Win32 API call is to load the address of the API’s IAT entry
into a CPU register and then issue a call instruction referencing
the register. Simple backward slicing on the register from the
point of the call instruction can be used to identify that this call
instruction is meant to invoke a specific API.

Static analysis can also be used to identify calls to late-bound
Win32 APIs, which are APIs whose addresses are determined at
runtime using GetProcAddress. Upon encountering a call to
GetProcAddress, the Win32 API name can be associated
with the registers or memory locations that are to be bound to
the Win32 API addresses.

To accommodate real-world software, the preprocessing step
should be able to handle software comprised of multiple
executable components, such as custom DLLs.

3.2 Monitoring and detection
This step monitors the Win32 API calls made by software
processes and verifies that the instruction addresses from which
the calls were made and the names of the corresponding Win32
APIs were identified during the preprocessing step. There are
two logical parts to this step: monitoring Win32 API calls, and
validating the calls against the information recorded during the
preprocessing step.

Monitoring Win32 API calls: A number of methods can be
used to monitor the Win32 API calls made by processes [4]. In
our proof-of-concept study, we chose to use the direct patching
method implemented by the Detours package [5], which
instruments the DLLs containing the Win32 APIs at load time.
By directly patching the entry point of each Win32 API, all
Win32 API calls can be monitored. Patching DLLs at load time
allows software executables to be monitored selectively.

Figure 1 depicts how a call to a Win32 API occurs from a
software process when the API is patched with Detours. The
process makes a call into the API function (1), the first
instruction of which is an unconditional jump to the Detours
wrapper (2). The wrapper may execute pre-stub code before
returning control to the Win32 API body (3 and 4). After the
Win32 API body finishes executing, control is returned back to
Detours (5), which may execute post-stub code before returning
control to the caller (6). The pre-stub code is where DOME
validates the Win32 API call against the information identified
during the preprocessing step.

Similarly to the preprocessing step, the monitoring step should
be able to handle software comprised of multiple executable
components.

78

EXE
IAT:
API1_ADDRESS
API2_ADDRESS

Text:
…
CALL [IAT_API2_ENTRY]
…

Win32 DLL

…
API2:
JMP API2_STUB
<Function Body>
RET

1

Detours DLL

…
API2_Wrapper:
<Pre-stub code:
 Validate the call>
CALL API2_TRAMPOLINE
<Post-stub code>
RET

API Trampoline
API2_TRAMPOLINE:
PUSH EBP
MOV EBP, ESP
JMP API2 + Offset

2

3

4

5

6

Figure 1: Detoured API Call

Validation of Win32 API calls: As was mentioned above, the
validation of Win32 API calls is done by the pre-stub code of
the API’s wrapper. When a Win32 API call is made and the pre-
stub code gets control, the top of the runtime stack is supposed
to contain the return address for the call. To validate the call,
DOME checks whether the return address and the API name
were recorded during the preprocessing step. If they were, the
wrapper control transfers to the Win32 API body. Otherwise,
detection is signaled.

To handle DLL relocation (rebasing), which may occur when
two or more DLLs want to be loaded into conflicting address
ranges, DOME should use instruction addresses relative to the
DLLs’ base addresses.

3.3 Handling bypassability
The basic version of DOME described so far is simple, and yet
is highly effective at detecting most of MC within its area of
coverage. The notable exception is MC that intentionally avoids
DOME and/or the underlying monitoring technique [6]. To
handle such MC, DOME needs to be extended. We now outline
how this can be done; we intend to make these extensions a part
of our future work.

DOME bypassability: One way that MC may attempt to
circumvent DOME is to forge the return address on the top of
the runtime stack, making it appear that the call originated from
one of the statically identified locations. Another way is for MC

to use the software’s own instructions that call Win32 APIs,
while possibly supplying its own malicious arguments. There is
a number of measures that can be implemented to counter such
attacks. Two promising techniques are identifying and recording
static Win32 API arguments during preprocessing and then
validating them at runtime, and performing runtime stack
verification.

Wrappers bypassability: Any API wrapper system
implemented in user-mode can be bypassed. In particular, if MC
is designed with the knowledge that the detection system uses
Detours, it can manipulate memory and disable the wrappers
prior to calling any APIs. In addition, MC can call directly into
the kernel, thus avoiding the Win32 API calls and their
wrappers. On IA32 systems, calls into the kernel typically rely
on a privilege change triggered by an interrupt or the
sysenter instruction. One way to prevent wrappers from
being bypassed is to add a kernel-level authentication
mechanism that verifies that the APIs are reached only after the
execution has passed through the unmodified wrappers.

4. PROOF-OF-CONCEPT STUDY
In order to assess the feasibility of implementing DOME and its
ability to detect MC, we performed a proof-of-concept study.
The specific goals of this study were to verify the following
three assertions:

1. It is possible to identify API calls in real-world software
using static analysis.

2. It is possible to monitor API calls at runtime and to identify
the instructions responsible for the observed API calls.

3. Provided the above two assertions are true, DOME is able
to accurately distinguish between normal code and code
that is injected, dynamically generated, or obfuscated.

The pr
disassem
executab
Win32 A
the Deto
file con
Figure 2
API cal
not iden

We eva
executab
embedd
code inj

79

Figure 2: Sample output produced by

004013AC ExitProcess

004013BD GetModuleHandleA

004013FF GetVersionExA

00401434 GetEnvironmentVariableA

00401494 GetModuleFileNameA

00401539 HeapCreate

00401578 HeapDestroy
the preprocessing and the monitoring steps

eprocessing step was done using the IDA Pro
bler [7], which, in addition to disassembling
les, also identifies and annotates instructions that make
PI calls. The monitoring step was implemented using

urs wrapper package [5]. Each step produced an output
sisting of API calls and their locations, as depicted in
. The output files were then compared to identify the

ls that occurred at runtime from the locations that were
tified during the preprocessing step.

luated DOME’s performance on a number of benign
les, benign executables that had malicious code

ed in them, and benign executables that had malicious
ected into them at runtime.

4.1 Benign executables
Table 1 lists the benign samples that we used. The samples
include software applications that were created using different
compilers and that involve different types of resources (e.g.,
network and file system).

Table 1. Selected Benign Executables
Application Vendor Compiler Key Resources

Ipconfig Microsoft VC++ Network
Front page Microsoft MS Internal File, Network,

COM
Interfaces

WinVNC AT&T Borland Network
Acrobat Adobe VC++ File, DLL

plugins
Mozilla Mozilla Gcc Network

Notepad* Microsoft VC++ File
Perfmon* Microsoft MS Internal Registry
Chlinst* Microsoft MS Internal Registry

The tests were all successful: we did not observe any unexpected
API calls. The only false positives we observed were due to
dynamic binding of APIs, which we expected because the static
analysis performed by IDA Pro does not handle this case.

Table 2. Selected Malicious Executables
Malicious

Code
Host

Application
Type Class

W32-Crypto Notepad Virus Dyn. Code Gen.
W32-Simile Perfmon Virus/

Worm
Obfuscation

W32-Magistr Chlinst Virus/
Worm

Dyn. Code Gen.

W32-CTX Eclabm13 Virus Dyn. Code Gen.
W32-Roach Cookie Worm Dyn. Code Gen.

W32-Sapphire MS SQL server Worm Code Injection

4.2 Malicious code samples
Table 2 lists the MC samples. These consist of the viruses and
worms that use dynamic code generation (polymorphism),
obfuscation, and code injection. For each of the samples, the
proof-of-concept implementation successfully detected API calls
made by the MC.

The proof-of-concept implementation produces a trace of the
Win32 API calls that were observed at runtime but that were not
identified during preprocessing. This trace, in a way, “tells a
story” of how the MC works, which can be used to analyze the
MC further and to produce human-readable descriptions of what
the MC does. As an illustration, Table 3 shows a sample of the

* Our malicious code samples were embedded in these

applications, so we felt that we should also analyze the
original executables to verify that our system identified only
the API calls made by the MC.

trace for an application infected with the W32-Simile virus and
compares it with the analysis of W32-Simile presented in Virus
Bulletin [8], which states that

W32-Simile is highly obfuscated and challenging to
understand. The virus attacks disassembling, debugging
and emulation techniques, as well as standard evaluation-
based techniques for virus analysis. In common with many
other complex viruses, Simile uses [entry-point
obfuscation] EPO techniques.

As can be seen from Table 3 the output produced by DOME
matches the human-written description of W32-Simile, yet this
output was generated without human guidance.

4.3 Performance overhead
In our experience, IDA Pro can statically analyze PE
executables at around 5KB/s on a 600MHz Pentium machine.
The Detours wrappers add around a 5% runtime overhead to
each API call, which is consistent with the figures cited by [5].

5. DEPLOYMENT OPTIONS
DOME has been primarily designed as a host-based, online
detection technique capable of monitoring and protecting real-
world software. However, the technique can also be
implemented in offline scanners and MC analysis tools to detect
dynamically generated and obfuscated code in software
executables.

5.1 Online detection and blocking
In this instantiation, DOME can be used to preprocess and
monitor designated software executables, and can detect and
stop worms injected into these executables at runtime, as well as
dynamically generated and obfuscated MC embedded in these
executables prior to the preprocessing step. Note that DOME is
also capable of detecting both simple and complex viruses that
infect software executables after they are preprocessed;
however, such alterations to software executables can be
detected via simpler means, such as comparing the executables’
current and original hashes.

In a real-world deployment scenario, there are a number of
alternative approaches to preprocessing and monitoring.
Preprocessing can be done for all or selected executables, and
for each installed copy separately or once for a set of
installations either by a site administrator, software
manufacturer, or trusted third-party. Monitoring of Win32 API
calls can be done per executable, or system-wide by rewriting
DLLs.

As was mentioned earlier, some software applications use
obfuscation to protect proprietary algorithms or to prevent
software from being reverse engineered. If such software needs
to be protected by DOME, an administrator, at the time of
system deployment and/or tuning, could mark detected API calls
as legitimate. Also, in a military or government environment, it
is reasonable to require obfuscated software to come equipped
with some sort of guarantees of its behavior, which could
include the list of API calls that the software makes along with
their locations.

80

Table 3. Comparison for W32 Simile

When a new software executable is installed and run by a user
before the preprocessing step is done, an alternative version of the
system can be employed: when the executable calls an API, the
system can read the corresponding code on disk and, using local
static analysis, determine if the API call can be identified at that
location (the analysis results can be cached). If not, the system
could signal detection and block the API call. The local code
analysis performed at runtime will impose additional overhead
and may be less accurate than full analysis performed as the
preprocessing step.
The most effective way to protect a network against fast-spreading
worms is to deploy DOME systems on every machine. This will
protect the network from a distributed, targeted attack capable of
compromising the network in only one to three generations of
worm propagation.
In order to ensure full protection from the MC threat, a system
based on DOME should be deployed in conjunction with other
detection-response systems designed to address MC not covered
by our technique, such as scripts and social-engineering worms.
DOME systems can also be deployed on honeypots [9] to monitor
their network services and facilitate early detection and analysis of
worm-based attacks.

5.2 Offline software scanning
The DOME technique can also be used in an antivirus-like
scanner. Such a scanner could preprocess designated software
executables and then launch the executables to see if they produce
any Win32 API calls from locations that were not identified.
For thorough scanning, the executables need to be driven through
all possible execution paths; however, the problem of application
driving is an active area of research that currently does not have
practical application-independent solutions. A practical approach
is to simply launch the executables and then terminate them after
some small amount of time. This approach would detect MC that
executes at least one Win32 API call every time its host
executable is launched, which is typical of existing MC and is

consistent with what we observed during our proof-of-concept
study. For example, MC that uses a temporal trigger to control
when its malicious body is run will typically call a time API to
check the trigger conditions every time the host executable is
launched.
To ensure the host system is not affected by MC during scanning,
the Win32 API calls that are identified as malicious need to be
blocked.

5.3 Online and offline analysis
DOME does not just detect MC, it actually pinpoints the
instructions belonging to MC. This information can be used by an
online or offline analysis tool to isolate and analyze MC. Possible
goals of such analysis might be to generate detection signatures
and firewall rules, to analyze the payload and trigger mechanisms,
to predict propagation vectors, or to identify code lineage and
perform attribution. DOME can also serve as the foundation for a
tool that generates human-readable descriptions of how MC
works.

6. RELATED WORK
Methods of detecting MC can generally be classified into one of
the following two categories: misuse detection and anomaly
detection. Misuse detection schemes focus on “maliciousness”.
They attempt to identify code characteristics and/or runtime
behaviors that are defined to be malicious. Unlike misuse
detection schemes, anomaly detection schemes focus on
“normalcy”. They attempt to identify code characteristics and/or
runtime behaviors that deviate from those that are defined to be
normal, i.e., non-malicious.
DOME is an anomaly detection technique. Normal runtime
behavior consists of the Win32 API calls that occur from the
locations that have been identified by DOME during the
preprocessing step.
Many existing anomaly detection techniques, such as [3, 10-14],
create models of normal behavior based on sequences of system

Human Analysis (Virus Bulletin) Malicious Win32 API call trace detected by DOME

“On initial execution, the virus
body will retrieve the addresses of
20 APIs that it requires for
replication and for displaying the
payload.”

1. 013FDF09 GetProcAddress (CreateFileA) KERNEL32
2. 013FDF09 GetProcAddress (CreateFileMappingA) KERNEL32
3. 013FDF09 GetProcAddress (MapViewOfFile) KERNEL32
4. 013FDF09 GetProcAddress (UnmapViewOfFile) KERNEL32
5. 013FDF09 GetProcAddress (GetSystemTime) KERNEL32
...
20.013FDF09 GetProcAddress (MessageBoxA) USER32

“Next the replication phase begins.
It starts by searching for *.exe in
the current directory, then on all
fixed and mapped network drives.”

0140A544 FindFirstFileA
013F7616 FindNextFileA
013F7616 FindNextFileA
...
013FC5B5 GetFileAttributesA
...(API calls infecting the file)
0140B0B4 SetFileAttributesA
013F7616 FindNextFileA
...

0140ACA9 SetCurrentDirectoryA
0140A544 FindFirstFileA
013F7616 FindNextFileA
...
01408550 GetLogicalDriveStringsA
013F7485 GetDriveTypeA
0140ACA9 SetCurrentDirectoryA
0140A544 FindFirstFileA
013F7616 FindNextFileA
...

81

calls; Feng et al. [10] provide a comprehensive review of these
techniques. In contrast, DOME does not use system call traces.
It is unique in using the addresses of the system call instructions
as the basis for its model of normal behavior. The advantages of
this model include simplicity, practicality, and effectiveness.
Most anomaly detection techniques, especially those that use
system calls [10, 11, 13, 14], create models of normal behavior by
monitoring software at runtime. Then, when the learning phase is
completed, they switch to an anomaly detection phase, during
which they continue to monitor the software’s execution looking
for deviations from the behavior that was learned.
A limitation of these techniques is that their models include only
the behavior observed during the learning phase, which is likely to
be only a fraction of all of the behaviors that the software can
exhibit. Unlearned behavior observed during the anomaly
detection phase results in false positives [15]. DOME does not
have this limitation since its models include all the non-malicious
system calls that the executables can make at runtime; as a result,
DOME generates virtually no false-positives.
Moreover, in comparison with observation-based anomaly
detection, DOME provides a wider area of coverage. Observation-
based systems are designed to detect MC intrusions that occur
during the anomaly detection phase, after the models of normal
behavior are learned. DOME is able to detect not only MC
injected at runtime but also sophisticated MC embedded in the
software executables prior to the preprocessing step.
Like DOME, the techniques of Wagner et al. [3] and Giffin et al.
[12] use static analysis of software to construct models of the
software’s normal behavior.
The technique of Wagner et al [3] operates on source code, and
makes a number of simplifying assumptions regarding the
complexity of the source code. The technique constructs a global
control-flow graph of the software and then converts the graph
into a nondeterministic finite state automaton (NFA) or a
nondeterministic pushdown automaton (NPDA) to model the
sequences of system calls that the software can make. These
models are complex and it is unclear whether they can be
constructed for real-world software; moreover, the monitoring
overhead is substantial because of the nondeterminism of the
automata. The NFA model has an inherent imprecision problem: it
includes system call traces that are not present in the software; if
such traces are produced by MC they will not be detected. The
NPDA model addresses this imprecision problem by including an
abstract version of the runtime stack in the model, but this
extension makes the model even more complex and results in
impractical runtime overhead.
The technique of Giffin et al. was developed for securing mobile
code, such as remote procedure calls [12]. It operates on
executable code and creates models that are similar to the NFA
model of Wagner et al. The authors suggest several program
transformation techniques to reduce the amount of
nondeterminism and make the model more precise; such
transformations may be appropriate for mobile code, but are
unlikely to be appropriate for traditional host-based software
because of legal and interoperability issues.

7. SUMMARY
We presented DOME, a technique for detecting injected,
dynamically generated, and obfuscated MC in software
executables. The results of our proof-of-concept study suggest that

DOME is effective at detecting MC. The main idea of DOME is
to use static analysis to identify the locations of Win32 API calls
within software executables and to use these locations as a model
of which Win32 API calls are allowed to occur at runtime. This
basic model can be extended in a number of ways to counter
MC’s attempts to bypass DOME; one promising idea is to include
in the model information about the Win32 API call arguments.
We will pursue this and other extensions in our future work, when
we implement and evaluate an online detection system based on
DOME.

8. REFERENCES
[1] Pietrek, M. Inside Windows: An In-Depth Look into the

Win32 Portable Executable File Format (Part I). In
www.msdn.microsoft.com. 2002.

[2] Bergeron, J., M. Debbabi, M.M. Erhioui, and B. Ktari.
Static Analysis of Binary Code to Isolate Malicious
Behaviours. In WET ICE 99. 1999.

[3] Wagner, and Dean. Intrusion Detection via Static Analysis.
In IEEE Symposium on Research in Security and Privacy.
2001. Oakland, CA.

[4] Kaplan, Y. API Spying Techniques for Windows 9x, NT and
2000. http://www.internals.com/articles/apispy/apispy.htm

[5] G. Hunt, D.B., Detours: Binary Interception of Win32
Functions. 1999, Microsoft Research.

[6] Wagner, D., and P. Soto. Mimicry Attacks on Host Based
Intrusion Detection Systems. In 9th ACM Conference on
Computer and Communications Security. 2002.
Washington, DC, USA.

[7] Data Rescue. IDA Pro Disassembler.
http://www.datarescue.com/idabase/

[8] Frédéric Perriot, P.F., Péter Ször, Striking Similarities, in
Virus Bulletin. 2002. p. 4-6.

[9] Tünnissen, J. Intrusion Detection, Honeypots & Incident
Response resources. http://www.honeypots.net/

[10] Feng, H., O. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly Detection Using Call Stack Information. In IEEE
Security and Privacy. 2003. Oakland, CA.

[11] Sekar, R., A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H.
Yang, and S. Zhou. Specification-Based Anomaly
Detection: A New Approach for Detecting Network
Intrusions. 2002. Washington, DC, USA.

[12] Giffin, J.T., S. Jha, and B.P. Miller. Detecting Manipulated
Remote Call Streams. In 11th USENIX Security
Symposium. 2002.

[13] Ghosh, A.K., A. Schwartzbard, and M. Schatz. Learning
Program Behavious Profiles for Intrusion Detection. In
Usenix Workshop on Intrusion Detection and Network
Monitoring. 1999. Santa Clara, CA.

[14] Warrender, C., S. Forrest, and B. Pearlmutter. Detecting
Intrusions Using System Calls: Alternative Data Models. In
IEEE Symposium on Security and Privacy. 1999.

[15] Axelsson, S. The Base-Rate Fallacy and Its Implications
for the Difficulty of Intrusion Detection. In ACM
Conference on Computer and Communications Security.
1999.

82

